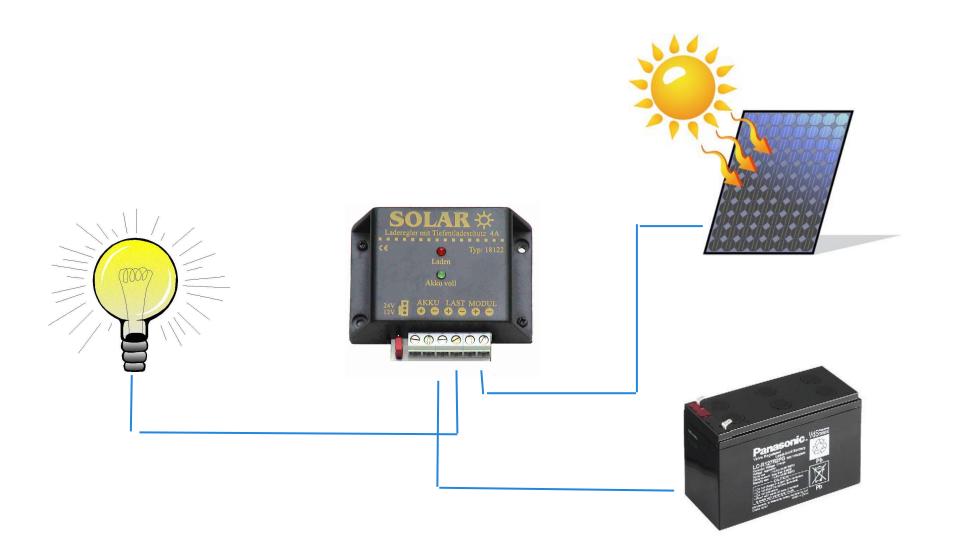
Solar Powered Router

Felicitus 2013-04-30

Once upon a time...

- TL-WR703n
- 0,5W Stromverbrauch
 - -> 5V / 100mA
- OpenWRT-fähig



Der Stein, der rollte

- 2 Bleiakkus von doozer
- 12V
- 5Ah
- könnte den TL-WR703n 120 Stunden lang versorgen*

^{*} wenn man einen idealen DC-DC Wandler besitzt, alternativ einen Flux-Kompensator verwenden

Solarsystem

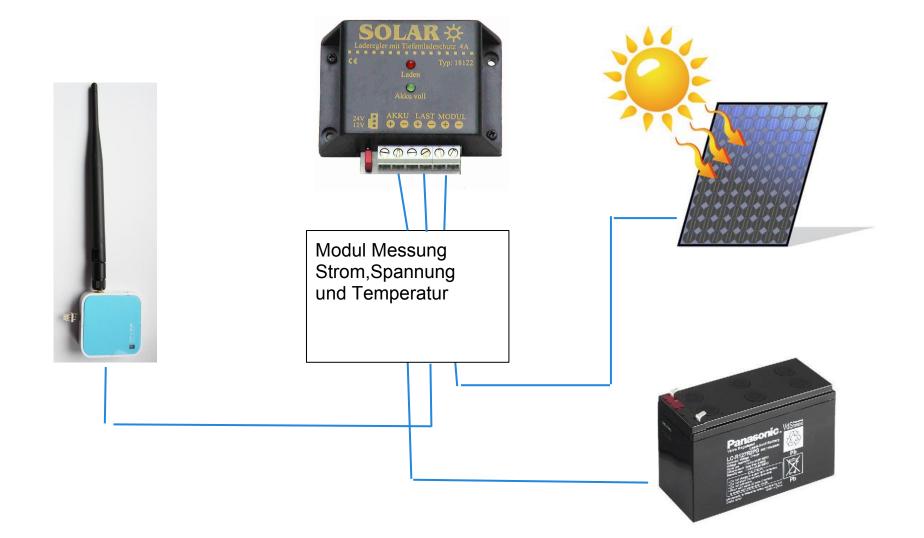
	Leistung	pro Tag	pro Monat
Router	0,5W	0,012 kWh	0,35 kWh
30% Verlust durch DC-DC Wandler	0,65W	0,015 kWh	0,468 kWh
Verlust Effizienz Solarzelle 15%	0,75W	0,018 kWh	0,54 kWh
Zum einfacher Rechnen	1W	0,024 kWh	0,72 kWh

- Herstellerangabe: Watt Peak (Wp)
 - Zellentemperatur = 25 °C
 - Bestrahlungsstärke = 1000 W/m²
 - Sonnenlichtspektrum gemäß Luftmasse = 1,5
- Spitzenwert kommt in Mitteleuropa statistisch nicht häufig vor
- Klartext: Effektiver Energieertrag viel geringer als es scheint
- Ein Panel für 25€ mit 20Wp sollte ausreichen, oder?

 Hilfsmittel: <u>Photovoltaic Geographical</u> <u>Information System</u>

 Hilfsmittel: <u>Photovoltaic Geographical</u> <u>Information System</u>

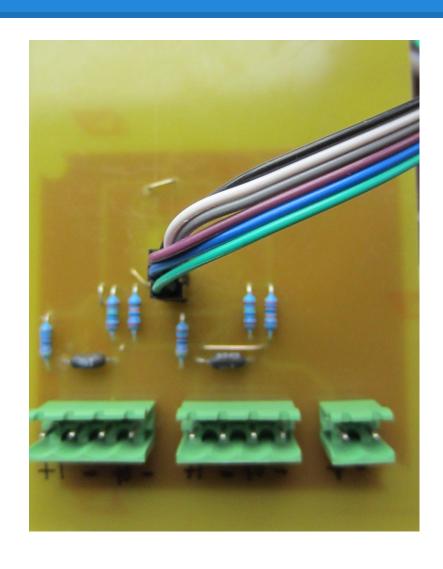
Month	E _d	Em	H_d	H_m
Jan	0.02	0.612	1.18	36.7
Feb	0.03	0.965	2.09	58.6
Mar	0.05	1.62	3.26	101
Apr	0.08	2.32	5.00	150
May	0.08	2.35	5.03	156
Jun	0.08	2.38	5.37	161
Jul	0.07	2.31	5.08	157
Aug	0.07	2.18	4.76	148
Sep	0.06	1.80	3.95	118
Oct	0.04	1.28	2.61	80.8
Nov	0.02	0.688	1.40	42.0
Dec	0.02	0.519	1.02	31.5
Yearly average	0.0521	1.58	3.40	103
Total for year	19.0		1240	

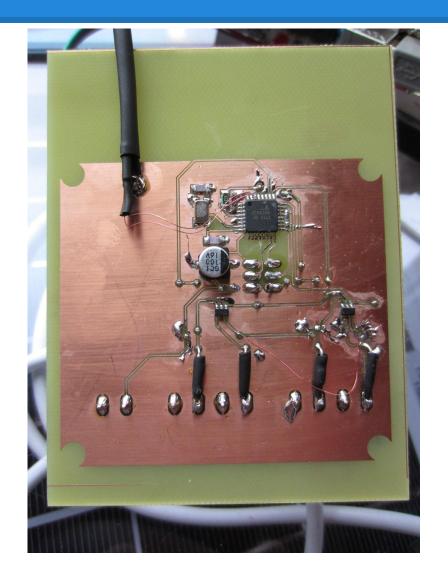

E_d: Average daily electricity production from the given system (kWh)

 E_m : Average monthly electricity production from the given system (kWh)

Fazit

- rein rechnerisch reicht es
- Jetzt: Aufbauen und testen!


Autonomer Router: Aufbau



Strom-, Spannungs- und Temperatur-Modul

- Kann 2x Strom, 2x Spannung und 1x Temperatur messen
 - Abgegebene Spannung der Solarzelle
 - Batteriespannung
 - Spannung im Verbraucherkreis
 - Strom im Verbraucherkreis
 - Temperatur über One-Wire-Temperatursensor
 - danke Alex!
- Spuckt alle Daten über serielle Schnittstelle aus

Strom-, Spannungs- und Temperatur-Modul

Und was tut es?

- Solarrouter wird bei mir zuhause installiert
- Spielt zunächst normalen WiFi-Client
- Pusht Strom/Spannung/Temperatur auf Cosm
- Soll den Winter überleben
- Tut sonst nichts weiter spannendes
- Wichtig: Messdaten veröffentlichen (aka. Cosm)

Upcoming Challenges: Sommer

- Wie weit heizt sich das Gehäuse auf?
- Gibt es Kondenswasserprobleme?
 - Benötigt einen Feuchtigkeitssensor
- Wie hoch wird die Leistung sein?

Upcoming Challenges: Winter

- Wie gut verträgt die Elektronik die pure Kälte?
- Auch hier: Kondenswasser?
- Solarzelle liefert weniger Leistung
- Bleiakku verliert an Kapazität
- => Könnte im Winter knapp werden

Routeränderung

- Pro-Tipp: Verwechselt man beim DC-DC Wandler Eingang und Ausgang...
 - ...so liegt am Eingang die Ausgangsspannung an
- TL;DR: Der TL-WR703n mochte 12V nicht so
- leihweise Carambola-Board von Muzy
 - erhöht den Verbrauch auf 1,5W Peak
 - sollte im Sommer kein Problem sein
- später Carambola2
 - o laut spec 0,5W max, eher weniger

Materialkosten

TL-WR703n	еВау	22€
Solarzelle 20Wp, monokristallin	еВау	25€
Solarladeregler	еВау	10€
Bleiakku 12V/5Ah	Doozer	0€ (10€)
Strom, Spannung + Temperaturmessung	selbstbau	15€
Sonstiges (Kabel, Verbrauchsmaterial)		15€
Gesamt		87€ (97€)

Zukunftsideen

- Mesh Networking
- Embedded Solar Router
 - Anstatt DC-DC-Wandler+Router+Monitoringboard nur ein Board mit Carambola2 o.ä.
 - benötigt dann nur noch Laderegler, Akku und Solarzelle
- Wasauchimmer